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Solving chemical master equations numerically on a large state space is known to be a dif-
ficult problem because the huge number of unknowns is far beyond the capacity of tradi-
tional methods. We present an adaptive method which compresses the problem very
efficiently by representing the solution in a sparse wavelet basis that is updated in each
step. The step-size is chosen adaptively according to estimates of the temporal and spatial
approximation errors. Numerical examples demonstrate the reliability of the error estima-
tion and show that the method can solve large problems with bimodal solution profiles.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Stochastic models provide a better understanding of many complex systems in physics, chemistry, biology, ecology and
other sciences. The evolution of such systems is often driven by the random interaction of d different types of particles
which, depending on the applications, can represent molecules, humans, animals, or other discrete units. In nearly all pro-
cesses in nature, the particle numbers are subject to random fluctuations caused by inherent stochastic noise. If all species
are present in abundance, the effects of fluctuations and the discreteness of individual particles can be neglected. In this case
the dynamics of the system can be reasonably modelled with the traditional reaction-rate approach, i.e. by solving a set of d
ordinary differential equations for the concentrations of the species. This simplification, however, is inappropriate if appli-
cations such as, e.g., the transcription of genetic information in a gene regulatory network are investigated. Here, the evo-
lution of the system must be regarded as a Markov jump process {X(t), t P 0} on the d-dimensional discrete state space
Nd. Each state x 2 Nd is a vector of particle numbers, and every reaction event induces a jump of the random variable X(t)
to a new state.

The stochastic behavior allows the reproduction of important effects of real-life systems, but often causes severe compu-
tational problems. Realizations of the Markov jump process can be generated by stochastic simulation (cf. [13]), but the main
object of interest is usually the probability distribution pðt; xÞ ¼ PðXðtÞ ¼ xÞ, and approximating this distribution up to the
desired accuracy by generating a huge number of realizations can be computationally inefficient. An alternative approach
is to determine p(t,x) directly, i.e. without stochastic simulations. It is well-known that p(t,x) is the solution of the chemical
master equation, but solving this equation numerically is a challenging task: since the solution has to be computed in each
. All rights reserved.
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state of a huge state space, the number of degrees of freedom is far beyond the capacity of traditional methods. Novel meth-
ods for solving the chemical master equation have been constructed in [1,8–12,16–18,20,21,23–25,27,30]. These methods
are based on different approaches and assumptions, but they all have in common that the immense size of the problem
is somehow reduced to a computationally manageable level. Generally speaking, the efficiency of each method depends
mainly on its compression ratio, i.e. on the percentage of unknowns required to obtain the desired accuracy out of the total
number of degrees of freedom.

The method advocated in this article is based on the representation of the solution in a sparse wavelet basis. In the wave-
let basis, the number of essential degrees of freedom only amounts to a very small fraction of the total number of unknowns.
This is due to the fact that the wavelet transform decomposes the input signal into information on a hierarchy of scales. Since
smooth signals contain relatively few detail information, many coefficients of the wavelet representation nearly vanish and
can be neglected if a tiny approximation error is accepted. Since the solution moves and changes as time evolves, however,
the numerical method must not only propagate the coefficients of the essential basis elements, but also has to determine in
each step which basis elements are currently the essential ones.

A prototype of such an adaptive wavelet method has been proposed in [20,21] where a Galerkin ansatz with Rothe’s
method was combined with an iterative procedure that detects the essential degrees of freedom in each time step. Numerical
experiments have shown the efficiency of this approach, but also revealed that two major improvements are possible:

� The wavelet used in [20,21] was the Haar wavelet. The corresponding basis elements are particularly simple and allow
efficient evaluations of the entries of the Galerkin matrix. The approximation in this basis, however, is usually far from
optimal because the polynomial order of the Haar wavelet is only one. In the refined method presented here, the Haar
basis is replaced by a higher-order basis of Daubechies wavelets. This yields a faster decay of the wavelet coefficients
and hence a better compression ratio such that larger problems can be solved with a higher accuracy. We remark that
other types of wavelets such as biorthogonal spline wavelets could also be used, and that this option is already available
in our implementation of the method. In order to keep the presentation as simple as possible, however, only Daubechies
wavelets are considered in this article.
� In [20,21] the solution was propagated with a fixed step-size. This is inconvenient for two reasons. First, it is usually not

clear a priori which step-size has to be chosen in order to obtain the desired accuracy. It would be clearly preferable to
select the error tolerance and let the method choose the appropriate step-size by itself. Second, the choice of the step-size
is often restricted by the stiff behavior of the solution in the initial phase whereas much larger time steps are possible
later when p(t,x) converges to a stationary distribution. Hence, an adaptive step-size selection would yield important
time savings for simulations. Such an adaptive time-stepping for the adaptive wavelet method is presented in Section
3.3. Our strategy is not based on comparison with an embedded method, but on analytical estimates for the errors caused
by the approximations in time and space. Moreover, the second-order scheme used in [20,21] is replaced by a fourth-
order integrator.

In the next section we formulate the problem, introduce the chemical master equation and define our notation. In Section
3 the Haar wavelet method derived in [20,21] is extended to higher-order Daubechies wavelets and provided with an adap-
tive step-size selection. Some parts of this section could be found in monographs on wavelet analysis or in [20,21], respec-
tively, but in order to make the exposition self-contained we have chosen to briefly compile the most important facts for the
reader. Numerical examples are presented in Section 4. These tests demonstrate that with the new extensions – higher-order
wavelets for the space approximation and adaptive step-sizes for the time integration – the adaptive wavelet method is
capable of solving large, non-trivial problems with bimodal solution profiles.
2. The chemical master equation

Suppose that the evolution of d species S1, . . . ,Sd interacting via K reaction channels is described by a Markov jump process
on the state space Nd: The entry XiðtÞ 2 N of a realization X(t) is the number of particles of the ith species at time t, where N

denotes the set of all non-negative integers including zero. Our goal is to compute the probability distribution
pðt; xÞ ¼ PðXðtÞ ¼ xÞ; x 2 Nd;
i.e. the probability that at time t there are exactly xi particles of the ith species (i = 1, . . . ,d). It is well-known (see, e.g., [14])
that p evolves according to the chemical master equation (CME)
@tpðt; �Þ ¼ Apðt; �Þ ð1Þ
pð0; �Þ ¼ p0ð�Þ;
where A denotes the operator
ðApðt; �ÞÞðxÞ ¼
XK

k¼1

ðakðx� mkÞpðt; x� mkÞ � akðxÞpðt; xÞÞ ð2Þ
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and p0 is a suitable probability distribution. We will occasionally omit the spatial variable and write, e.g., p(t) instead of
p(t,x). In Eq. (2), mk 2 Zd is the stoichiometric vector which means that X(t) jumps from the current state x to the new state
x + mk if the kth reaction channel fires. The term ak(x) P 0 is the propensity function of the kth reaction channel. Roughly
speaking, ak(x) indicates how likely it is that the kth reaction channel will fire in the next infinitesimal time interval (see
[14] for details). Typically, the propensity function of the reaction
n1S1 þ � � � þ ndSd ! m1S1 þ � � � þmdSd
with ni; mj 2 N and reaction constant c > 0 is given by
aðxÞ ¼ c
x1

n1

� �
. . .

xd

nd

� �
:

Reactions which can be inhibited are modelled with more complicated propensity functions; see Section 4 for examples.
Since the term x � mk in (2) may have negative entries and the functions p(t,x) and ak(x) only make sense for integer non-
negative particle numbers x ¼ ðx1; . . . ; xdÞ 2 Nd, we define p(t,x) = 0 and ak(x) = 0 for all x R Nd:

Although the CME is actually defined on the infinite state space Nd, numerical approximations are usually only computed
on the truncated state space
Xn ¼ fx 2 Nd : x1 < n1; . . . ; xd < ndg; ð3Þ

where n ¼ ðn1; . . . ; ndÞ 2 Nd is a suitably chosen truncation vector. It will always be assumed that n is so large that p(t,�) van-
ishes near the artificial border of Xn, such that the truncation error can be neglected. On the new boundaries, we impose the
discrete Neumann boundary condition
akðxÞ ¼ 0 if x 2 Xn and xþ mk R Xn; ð4Þ

which suppresses all reactions leading from x to a state outside the truncated state space. This boundary condition guaran-
tees that the solution of the truncated CME remains a probability distribution if p0 is a probability distribution, that a sta-
tionary distribution exists, and that all non-zero eigenvalues have negative real part (cf., e.g., [20]). These favorable
properties are lost if (4) is replaced by the discrete Dirichlet boundary condition
pðt; xÞ ¼ 0 for all x 2 Nd nXn: ð5Þ

For small times, there is no visible difference between the two options if the probability distribution is located far away from
the artificially imposed boundaries, but for longer time-intervals, the difference can be quite large. The reason is that Dirich-
let boundary conditions imply
X

x2Xn

@tpðt; xÞ ¼
X
x2Xn

Apðt; xÞ < 0:
Hence, the entire ‘‘probability mass” will leak out of the state space and as a consequence, the solution will converge to zero,
albeit very slowly. Therefore, we use the discrete Neumann boundary condition (4) instead of (5).

The truncated state space is finite yet still very large in most applications (see Section 4 for examples). Since the solution
p(t,x) has to be computed for every state x 2Xn, applying traditional methods to solve the CME is out of question for all but
very small systems. The method introduced in [20,21] compresses the huge number of degrees of freedom to a computation-
ally tractable size by representing and propagating the solution in a sparse Haar wavelet basis. Numerical examples have
shown the potential of the method, but also indicated that two extensions are necessary to handle larger problems: First,
the Haar wavelet basis must be replaced by higher-order wavelets with better approximation properties, and second, the
time integration must be enhanced by an adaptive time-stepping strategy. In this paper, we show how these two extensions
can be integrated into the wavelet method from [20,21].

3. Adaptive wavelet method

3.1. Daubechies’ orthogonal wavelets

The spatial approximation of the CME is not restricted to one particular class of wavelets. In the current implementation
of our method, the user can choose between biorthogonal spline wavelets and Daubechies wavelets, but for the sake of sim-
plicity, only the case of Daubechies wavelets is discussed in this article.

Providing an elaborated introduction to Daubechies wavelets and their analysis is far beyond the scope of this paper. Ex-
pert knowledge of wavelet theory, however, is not required to understand how our method works, because we will only
make use of certain properties of wavelets, not of the precise definitions and derivations. The purpose of this subsection is
to compile the most important of these properties. For details, the reader is referred to the monographs [2,7,26].

For j0; jmax 2 N the Daubechies wavelet basis of order m 2 N n f0g is a set of functions
uðmÞj0 ;k
jk 2 Z

n o
[ wðmÞj;k jk 2 Z; j ¼ j0; . . . ; jmax � 1
n o

� L2ðRÞ ð6Þ
with the following properties:
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1. Scaling function and mother wavelet. There is a scaling function uðmÞ 2 L2ðRÞ and a mother wavelet wðmÞ 2 L2ðRÞ such that
all basis elements are obtained from these functions by shifts and dilations:
uðmÞj0 ;k
ðxÞ ¼ 2j0=2uðmÞð2j0 x� kÞ; k 2 Z

wðmÞj;k ðxÞ ¼ 2j=2wðmÞð2jx� kÞ; j ¼ j0; . . . ; jmax � 1:
The support of the scaling function and of the mother wavelet lies within a compact interval.
2. Orthonormality. For all i, j 2 {j0, . . . , jmax � 1} and k; l 2 Z, we have
uðmÞj0 ;k
;uðmÞj0 ;l

D E
L2
¼ dk;l; wðmÞj;k ;w

ðmÞ
i;l

D E
L2
¼ dj;idk;l; uðmÞj0 ;k

;wðmÞi;l

D E
L2
¼ 0;
where dk,l is the Kronecker symbol.
3. Refinement equations. The scaling function u(m) and the mother wavelet w(m) satisfy
uðmÞðxÞ ¼
X2m�1

n¼0

hnuðmÞð2x� nÞ

wðmÞðxÞ ¼
X1

n¼2�2m

gnuðmÞð2x� kÞ
for certain filter coefficients hn 2 R and gn = (�1)nh1�n. There is no explicit formula for the scaling function or the mother
wavelet if m > 1. Values of u(m)(x) and w(m)(x) can be computed with the cascade algorithm which, starting from the known
values in certain points, computes intermediate values by applying the refinement equations iteratively. However, evalua-
tions of u(m)(x), w(m)(x) or the basis elements are rarely necessary. For the fast wavelet transform and its inverse (see property
4) only the filter coefficients h0, . . . ,h2m�1 are required, and these values can be looked up in the literature (see [26]).
4. Fast wavelet transform. Let Vjmax

be the closure of the span of the wavelet basis (6), and let
f ¼
X
k2Z

aðmÞj0 ;k
uðmÞj0 ;k

þ
Xjmax�1

j¼j0

X
k2Z

bðmÞj;k wðmÞj;k ð7Þ
be the representation of a function f 2 Vjmax
. Since numerical computations can only be performed on a bounded interval, we

assume that the support of f is finite. Hence, only a finite number of coefficients aðmÞj0 ;k
¼ uðmÞj0 ;k

; f
D E

L2
and bðmÞj;k ¼ wðmÞj;k ; f

D E
L2

are

non-zero. These coefficients can be very efficiently computed by the fast wavelet transform, which proceeds recursively
and exploits the properties 1 and 3. Conversely, reconstructing a function from its coefficients can be efficiently accom-
plished by the inverse fast wavelet transform.
5. The scaling functions and the mother wavelet generate a hierarchy of spaces Vj0 � � � � � Vjmax

� L2ðRÞ defined by
Vjþ1 ¼ Vj �Wj ¼ Vj0 �Wj0 �Wj0þ1 � . . .�Wj
and
Vj0 ¼ spanfuðmÞj0 ;k
jk 2 Zg; Wj ¼ spanfwðmÞj;k jk 2 Zg:
Let Pi : L2ðRÞ ! Vi denote the orthogonal projector onto Vi. Note that Pif is obtained by setting bðmÞj;k ¼ 0 for all j P i in (7).
Then, every f 2 Vjmax

can be represented as
f ¼ Pjmax
f ¼ Pj0 f þ

Xjmax�1

j¼j0

ðPjþ1 � PjÞf :
The term
Pj0 f ¼
X
k2Z

aðmÞj0 ;k
uðmÞj0 ;k

2 Vj0
approximates the function on the coarsest scale, whereas the terms
ðPjþ1 � PjÞf ¼
X
k2Z

bðmÞj;k wðmÞj;k 2Wj
represent the new detail information which can be captured when the space Vj is enlarged to Vj+1 = Vj �Wj. If Pjmax
f is suffi-

ciently smooth, one would expect that most of the information is already observable on the coarsest scales, and that for large
j the coefficients bðmÞj;k corresponding to the detail information (Pj+1 � Pj)f are close to zero. Hence, the wavelet basis allows to
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compress the data: if a small approximation error is acceptable, then only the few non-vanishing coefficients have to be stored
instead of the entire representation (7). A mathematically more precise formulation of this fact is stated in property 7.
6. Vanishing moments. The mother wavelet w(m)(x) of order m satisfies
Z

R

xnwðmÞðxÞdx ¼ 0 for all n ¼ 0; . . . ;m� 1:
This means that all polynomials with a degree less than m are contained in Vj0 .
7. Wavelet compression. Let f 2 Cn

0ðRÞ for some n 2 {1, . . . ,m}. Then, for all j 2 {j0 , . . . , jmax}, the projection error is bounded by
kf � PjfkL2 6 C2�njkf ðnÞðxÞkL2 : ð8Þ
This estimate confirms that omitting details by discarding the corresponding coefficients can still yield a very precise
approximation. Note that the approximation error does not only depend on the smoothness of the function and on the trun-
cation level j, but also on the order m of the wavelet, because (8) only holds for n 6m. Similar estimates can be shown under
weaker regularity assumptions, cf. [2].

Example (Haar wavelets). The Daubechies wavelet with m = 1 is the Haar wavelet. The scaling function is u(m)(x) = v[0,1)(x),
and the mother wavelet is w(x) = v[0,1/2)(x) � v[1/2,1)(x), with vI denoting the characteristic function of the interval I. The filter
coefficients of the refinement equations are h0 = h1 = g0 = 1 and g1 = � 1. The space Vj contains all functions which are con-
stant on all intervals 2�jk + [0,2�j), k 2 Z. For increasing j, the projection Pjf captures more and more details of the input func-
tion f. However, only polynomials of degree m � 1 = 0 can be represented exactly, and the estimate (8) is only true for n = 1.
Hence, the approximation properties of the Haar wavelet basis are rather modest. This was our motivation to use higher-
order Daubechies wavelets instead of the Haar wavelet to approximate the solution of the CME.

Example (Daubechies db2 wavelets). The scaling function and the mother wavelet for m = 2 are shown in Fig. 1. There is no
explicit formula for these functions. Both functions are zero outside the interval [0,3]. The filter coefficients are
h0 ¼
1þ

ffiffiffi
3
p

4
ffiffiffi
2
p ; h1 ¼

3þ
ffiffiffi
3
p

4
ffiffiffi
2
p ; h2 ¼

3�
ffiffiffi
3
p

4
ffiffiffi
2
p ; h3 ¼

1�
ffiffiffi
3
p

4
ffiffiffi
2
p and gn ¼ ð�1Þnh1�n:
3.1.1. Wavelets on Xn

The elements of the wavelet basis defined above are functions on R. For application to the CME, however, we need a
wavelet basis of functions on the bounded, discrete and multi-dimensional domain Xn � Nd: We briefly sketch how this
adaptation can be made.

There are several ways to define a wavelet basis in more than one spatial dimension. A straightforward option is to use
tensor products of one-dimensional basis elements, but this construction does not generate a multiresolution analysis (cf. Sec-
tion 2.2 in [2]). An alternative is described in Sections 1.4 and 2.12 of [2]. In our method both options can be used, and both
options were implemented in our MATLAB code.

A wavelet representation of a function on a bounded interval can be obtained by first extending the target function to R

by periodic continuation and then applying the above setting. The disadvantage of this strategy is that the extension will
introduce an artificial discontinuity at the boundaries, which will unnecessarily increase the number of wavelet coefficients
required to represent the target function. This inconvenience can be avoided with special wavelets designed for bounded
intervals; cf. Section 2.12 in [2]. Our method is compatible with each of these alternatives, but for simplicity, periodic con-
tinuation is used in the current implementation of our code.

As soon as wavelets on a bounded interval [a,b] have been defined, one can introduce an equidistant grid xn = a + n(b � a)/
2r with r 2 N and n = 0, . . . ,2r � 1. Then, every function f on that grid can be identified with a function on the discrete state
space {0, . . . ,2r � 1} via ~f ðnÞ ¼ f ðxnÞ. In the multivariate case, this defines a wavelet basis for functions on Xn.
3.1.2. Summary
Let HðXnÞ be the linear space of all discrete functions f : Xn ! R. On this space, we define the inner product
0 1 2 3−0.5

0

0.5

1

1.5

0 1 2 3

−1

0

1

2

Fig. 1. Scaling function (left) and mother wavelet (right) of the db2 wavelet (m = 2).
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hf ; gi ¼
X
x2Xn

f ðxÞgðxÞ; f ; g 2 HðXnÞ; ð9Þ
and the norm kfk2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
f ; fh i

p
. Let N = n1 �. . .�nd be the total number of states. With the construction sketched in this subsection,

one obtains an orthonormal, discrete wavelet basis fv ðmÞ1 ; . . . ;v ðmÞN g of HðXnÞ. For simplicity, the basis elements are enumer-
ated by one single index instead of (multi-) indices for level and number. The properties of this basis are inherited from the
univariate, continuous setting. The coefficients aðmÞj ¼ hf ;v ðmÞj i in the representation f ¼

PN
j¼1aðmÞj v ðmÞj can be computed with

OðNÞ operations with the fast wavelet transform. It is useful to remark that because we operate in a discrete setting, com-
puting the finest scaling coefficients presents no problems, even though the Daubechies scaling functions have no explicit
representation, as these are taken to be the values of the function f itself. Conversely, the function f can be reconstructed from
the coefficients aðmÞj with OðNÞ operations via the fast inverse wavelet transform. If f is sufficiently regular, then a higher-or-
der m implies a faster decay of the coefficients and thus a better compression rate when vanishing coefficients are discarded.
As a consequence of the orthonormality, the compression error in the norm k�k2 is the same as the 2-norm error of the dis-
carded coefficients.

The basis elements are somewhat abstract because there are no explicit formulas for the vj. As in the univariate, contin-
uous setting, these functions are defined recursively via the discrete counterpart of the refinement equations. The fast wave-
let transform and its inverse do not use the basis elements explicitly. These transforms can be thought of as black boxes
which, given either the input function or the coefficients of the wavelet representation, return the corresponding counter-
part. In the adaptive wavelet method constructed in the following subsections, the only part where the basis elements have
to be evaluated is the computation of the Galerkin matrix (17).

3.2. Approximation with fixed step-size

In this subsection we show how the solution of the CME (1) can be approximated adaptively in the wavelet basis. As a first
step, we consider a fixed time step h > 0 and concentrate on the question how the essential degrees of freedom can be de-
tected and propagated. The algorithm described below is essentially the one proposed in [20,21]. The difference is that
the latter used only a second-order scheme for the time integration and the Haar basis for the spatial approximation. A strat-
egy for adaptively selecting the step-size is presented in Section 3.3.

Let fv ðmÞ1 ; . . . ; v ðmÞN g be the orthonormal, discrete wavelet basis from the previous subsection. It is assumed that the poly-
nomial order m of the wavelet is chosen by the user, and the index ‘‘(m)” will from now on be omitted. Let
pn ¼
Xg

i¼1

biv ji � pðtnÞ ð10Þ
be the numerical approximation available at time tn = t0 + nh. Here, {j1, . . . , jg} is a small subset of the index set {1, . . . ,N}, and
b ¼ ðb1; . . . ; bgÞ

T 2 Rg is the coefficient vector of pn. The function pn is supposed to be propagated by one step of the 2-stage
Gauss-Runge–Kutta method. For linear problems this method is equivalent to the (2,2)-Padé approximation to the exponen-
tial function, and its order (order 4) is the highest possible among all integrators with two stages. Moreover, the method is A-
stable, which is important because the real parts of all eigenvalues of the operator A are non-positive and the CME can be
very stiff in the initial phase. Performing one time step means that the new approximation un+1 � p(tn+1) must be computed
by solving the linear equation
QðhAÞunþ1 ¼ PðhAÞpn ð11Þ
with
QðhAÞ ¼ I � h
2
Aþ h2

12
A2; PðhAÞ ¼ I þ h

2
Aþ h2

12
A2: ð12Þ
Here and below, I denotes the identity operator/matrix. An equivalent formulation is
unþ1 ¼ pn þ
h
2
ðg1 þ g2Þ ð13Þ
where (g1,g2) is the solution of
I � h
4A �h 1

4�
ffiffi
3
p

6

� �
A

�h 1
4þ

ffiffi
3
p

6

� �
A I � h

4A

0
B@

1
CA g1

g2

� �
¼
Apn

Apn

� �
: ð14Þ
Unfortunately, neither (11) nor (14) can be solved in a straightforward way because both linear systems are far too large for
standard direct or iterative schemes. The exact solution, however, is not required – it is sufficient to approximate un+1 up to
an error which does not significantly increase the local error of the time integration. According to the properties of the wave-
let basis it can be expected that an approximation pn+1 � un+1 can be found in a low-dimensional subspace of HðXnÞ. A first
candidate for this subspace is the span of fv j1 ; . . . ;v jgg, i.e. the subspace of the previous step. An approximation



5730 T. Jahnke, T. Udrescu / Journal of Computational Physics 229 (2010) 5724–5741
pð0Þnþ1 ¼
Xg

i¼1

cð0Þi v ji ; pð0Þnþ1 ¼ pn þ
h
2
ðgð0Þ1 þ gð0Þ2 Þ; gð0Þs ¼

Xg

i¼1

fð0Þs;i v ji ; s 2 f1;2g ð15Þ
in this space is obtained by imposing the Galerkin conditions
v ji ; ðI �
h
4
AÞgð0Þ1

� �
� h

1
4
�

ffiffiffi
3
p

6

 !
v ji ;Agð0Þ2

D E
¼ v ji ;Apn

	 


�h
1
4
þ

ffiffiffi
3
p

6

 !
v ji ;Agð0Þ1

D E
þ v ji ; ðI �

h
4
AÞgð0Þ2

� �
¼ v ji ;Apn

	 

ð16Þ
for all i = 1, . . . ,g. Let A 2 Rg�g denote the Galerkin matrix defined by
A ¼ ðaikÞgi;k¼1; aik ¼ v ji ;Av jk

	 

: ð17Þ
Then, (16) can be rewritten as
I � h
4 A �h 1

4�
ffiffi
3
p

6

� �
A

�h 1
4þ

ffiffi
3
p

6

� �
A I � h

4 A

0
B@

1
CA fð0Þ1

fð0Þ2

 !
¼

Ab

Ab

� �
ð18Þ
where fð0Þs ¼ ðf
ð0Þ
s;1 ; . . . ; fð0Þs;gÞ

T . Since the Galerkin matrix A 2 Rg�g is much smaller than A 2 RN�N , (18) can be solved with

GMRES or other iterative methods. The approximation pð0Þnþ1 is then obtained by a fast inverse wavelet transform of the

new coefficient vector cð0Þ ¼ bþ h
2 ðf

ð0Þ
1 þ fð0Þ2 Þ. Due to the equivalence of (11) and (14), c(0) solves the equation
QðhAÞcð0Þ ¼ PðhAÞb: ð19Þ
Of course, pð0Þnþ1 does in general not coincide with the solution un+1 of the full problem (11). Let
rð0Þ ¼ QðhAÞpð0Þnþ1 � PðhAÞpn
be the residual. The Galerkin condition (16) implies that the residual is orthogonal to the approximation space. Hence, the
residual shows which ‘‘part” of the full problem has been neglected by solving (19) instead of (11). Roughly speaking, the
value hvk,r(0)i (i.e. the coefficient of the residual in the wavelet basis) tells ‘‘how much the residual points into the direction
of vk”. If jhvk,r(0)ij is large, then the approximation will probably improve if vk is added to the current basis. Note that
hvk,r(0)i = 0 if vk is already contained in the selection of basis elements.

Now the adaptive wavelet method proceeds as follows. First, the basis is enlarged by a fixed number Dl of new elements.
The new elements v jgþ1

; . . . ;v jgþDl are those which yield the largest values jhvk,r(0)ij. Next, the Galerkin matrix (17) is updated
by adding Dl new lines and columns corresponding to v jgþ1

; . . . ;v jgþDl . Then, solving the system (19) with the enlarged A

yields a refined coefficient vector c(1) and an improved approximation pð1Þnþ1 ¼
Pgð1Þ

i¼1c
ð1Þ
i v ji with g(1) = g + Dl terms. Iterating

this procedure leads to a sequence of approximations pð0Þnþ1; pð1Þnþ1; pð2Þnþ1; . . . in a hierarchy of increasing approximation spaces.

As soon as kr(‘)k is smaller than the chosen tolerance, the iteration is stopped, and the approximation pð‘Þnþ1 is accepted.
In order to prevent unlimited growth of the number of basis elements, all dispensable terms are removed from the rep-

resentation of pð‘Þnþ1 ¼
Pgð‘Þ

i¼1c
ð‘Þ
i v ji in a post-processing step. Let I � f1; . . . ;gð‘Þg be a subset of the index set, and let

p½I 	nþ1 ¼
P

i2Ic
ð‘Þ
i v ji be the approximation obtained by deleting all terms with i R I from the representation. Since the wavelet

basis is orthonormal, the truncation error in k�k2 is the 2-norm of the discarded coefficients, i.e.
kpð‘Þnþ1 � p½I	nþ1k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
iRI

cð‘Þi

� �2
s

:

In order to reach an accuracy kpð‘Þnþ1 � p½I 	nþ1k2 6 tol trunc with a minimal number of basis elements, we simply order the coef-
ficients by magnitude and truncate the smallest coefficients as long as

P
iRI ðc

ð‘Þ
i Þ

2
6 tol 2

trunc: If the error is measured with
respect to k�k1 rather than k�k2, we choose toltrunc 6 c� tol where c is a factor which accounts for the equivalence of the
norms. The choice c ¼ 1=

ffiffiffiffi
N
p

is correct, but often too pessimistic. A more optimistic choice can be made by replacing N by
the number of states where pð‘Þnþ1 is essentially larger than zero. The function pnþ1 :¼ p½I 	nþ1 obtained by thresholding is the final
result of the entire time step.

The following algorithm sketches one single time step of the adaptive wavelet method with fixed step-size. The algorithm
does not store pð0Þnþ1; pð1Þnþ1; pð2Þnþ1; . . . but only one single function p̂nþ1 which is overwritten in each iteration.

Parameter: step-size h > 0, tolerance tol, safety factor Cr (see remark 3 below).
Input: index subset {j1, . . . , jg} and coefficients b1, . . . ,bg of the current approximation pn ¼

Pg
i¼1biv ji , Galerkin matrix A

defined by (17).
Output: index subset {k1, . . .,kl} and coefficients c1, . . . ,cl of the new approximation pnþ1 ¼

Pl
i¼1civki

, updated Galerkin
matrix.
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1. Set l̂ ¼ g.
2. Solve the linear system
I � h
4 A �h 1

4�
ffiffi
3
p

6

� �
A

�h 1
4þ

ffiffi
3
p

6

� �
A I � h

4 A

0
B@

1
CA f1

f2

� �
¼ Ab̂

Ab̂

 !
and set ĉ ¼ b̂þ h
2 ðf1 þ f2Þ. The vector b̂ is an embedding of b 2 Rg into Rl̂ :
b̂ ¼ ðb1; . . . ;bg; 0; . . . ;0|fflfflfflffl{zfflfflfflffl}
l̂�g

ÞT ð20Þ
3. Compute the new approximation p̂nþ1 ¼
Pl̂

i¼1ĉiv ji by a fast inverse wavelet transform.
4. Compute the residual r ¼ QðhAÞp̂nþ1 � PðhAÞpn with Q and P defined by (12).
5. If krk1 > Cr�tol:

(a) Compute vl ¼ v l; rh ij j for l = 1, . . . ,N by a fast wavelet transform.
(b) Find the indices jl̂þ1; . . . ; jl̂þDl of the Dl largest entries of (v1, . . . ,vN).
(c) Add v jl̂þ1

; . . . ;v jl̂þDl to the current selection of basis elements.
(d) Update the Galerkin matrix by adding new blocks corresponding to the new basis vectors:
A ¼ ðaikÞl̂þDl
i;k¼1 ; aik ¼ v ji ;Av jk

	 

:

(e) Set l̂#l̂þ Dl.
(f) Go to step 2

6. The result pnþ1 ¼
Pl

i¼1civki
is obtained by discarding all coefficients ci with i R I , where I is the index set of the largest

coefficients. The number of coefficients is chosen in such a way that kpnþ1 � p̂nþ1k1 6 tol (see above). The corresponding
columns and lines are deleted from the Galerkin matrix A.

3.2.1. Remarks

1. The adaptive wavelet method described here is closely related to similar methods for solving elliptic and parabolic partial
differential equations; cf. [3–6,28,29]

2. It is not advisable to compute the coefficient vector by solving (19) because the matrix A2 which occurs in Q(hA) typically
increases the condition number tremendously. This is avoided in the equivalent formulation (18). The price to pay, how-
ever, is the fact that the linear system (18) has twice as many unknowns as (19). The doubling of the linear system can be
avoided if the 2-stage Gauss-Runge–Kutta method is replaced by a singly diagonally implicit Runge–Kutta method (cf.
Section IV.6 in [15]) where only linear systems with the same matrix ðI � chAÞ 2 Rg�g, but different right-hand sides have
to be solved. Unfortunately, singly diagonally implicit Runge–Kutta method are either less accurate (order 3 with two
stages) or require more stages (three stages for order 4) than the 2-stage Gauss-Runge–Kutta method. Therefore, it is dif-
ficult to say a priori which method will be more efficient for a particular problem. We have tested both possibilities on
several applications and did not notice a significant difference in efficiency, as the computationally critical part of the
algorithm is the assembly of the Galerkin matrix A in Step 5(d) of the algorithm described above.

3. The iteration terminates if krk1 > Cr�tol. The safety factor Cr 6 1 in step 5 can be chosen as follows. If krk1 6 Cr�tol, then
comparing QðhAÞunþ1 ¼ PðhAÞpn (cf. (11)) and QðhAÞp̂nþ1 ¼ PðhAÞpn þ r yields the error bound
kunþ1 � p̂nþ1k1 6 kQðhAÞ
�1rk1 6 kQðhAÞ

�1k1 � Cr � tol: ð21Þ

In order to conclude that kunþ1 � p̂nþ1k1 6 tol, we have to choose Cr ¼ 1=kQðhAÞ�1k1. Based on our numerical experi-
ments, we conjecture that kQðhAÞ�1k1 ¼ 1, but unfortunately we were not able to prove this. However, since
ðI � hA=2Þ�1 is known to be contractive and QðhAÞ�1 is a higher order perturbation, choosing Cr / 1 seems to be
reasonable.

4. The limited memory of the computer imposes an upper bound for the maximal number of used basis elements. Thus, it is
sometimes more convenient to prescribe the number of degrees of freedom instead of the accuracy of the approximation.
In this case, the number of basis elements which are kept after the time-step (l) is chosen by the user. Moreover, one can
select a second parameter lmax which denotes the maximal number of basis elements during the time-step. The condition
‘‘If krk1 > Cr�tol” in step 5 is then replaced by ‘‘If krk1 > Cr�tol and l̂þ Dl 6 lmax”.

5. If the time step is rather large, then propagating the approximation sometimes demands much more basis elements than
representing it. In such a situation, many of the basis elements discarded at the end of a time step are selected again in the
next time step. This decreases the efficiency of the algorithm, because the corresponding entries in the Galerkin matrix
have to be computed once again. It is thus advantageous to fix a lower bound lmin for the number of degrees of freedom in
step 6.

6. Since pn+1 is supposed to approximate a probability distribution, special care must be taken to ensure positivity of the
numerical solution. This issue is not only related to the space approximation, where the oscillatory nature of the wavelet



5732 T. Jahnke, T. Udrescu / Journal of Computational Physics 229 (2010) 5724–5741
basis combined with coefficient thresholding can potentially lead to negative values for the approximated function, but
also affects time integration. Even if the spatial representation would be exact, meaning that all the basis elements are
used to approximate the function, the numerical solution could still have negative entries if rather large-steps are used.
This is because most Runge–Kutta methods only respect positivity if the time-step is sufficiently small (an exception is
the implicit Euler method applied to _y ¼ �My where M is a M-matrix; in this case, the numerical solution is positive for
every step-size h > 0 if y0 P 0). Hence, methods based on other spatial approximations do not always preserve positivity,
either. However, the knowledge that the exact solution must be non-negative can be used as an indicator. If negative
entries appear in the probability distribution, then the step-size must be decreased and/or the number of basis elements
must be increased. We remark that in our numerical tests loss of positivity only happened when problems with a stiff
transient phase were approximated with very low tolerances.

3.3. Adaptive step-size control

Up to now, the wavelet method was adaptive in space, but not in time. Solving chemical master equations with a fixed
step-size, however, can be rather inefficient because often the short stiff transient phase at the beginning of the time interval
imposes severe step-size restrictions whereas much larger time steps can be made towards the end.

In this subsection we introduce a strategy to select the step-size adaptively1 in such a way that the (local) approximation
error remains under or close to the chosen tolerance tol. Strictly speaking, the error bounds given below will only guarantee
that the error is smaller than C�tol with some (moderate) constant C > 1. If it is of crucial importance to keep the error always
below the tolerance, this can be achieved by introducing an appropriate safety factor.

We start with the following bound for the local error.

Theorem 1. Let pn be the approximation computed in the nth time step with tolerance tol > 0 and let p(t) be the exact solution of
the CME
1 We
propaga
problem
_pðtÞ ¼ ApðtÞ for t 2 ½tn; tnþ1	
pðtÞn ¼ pn

ð22Þ
which starts from pn at time tn. Suppose that the representation of p̂nþ1 before the truncation (step 6) is p̂nþ1 ¼
Pl̂

i¼1ĉiv ji and let
V ¼ spanfv j1 ; . . . ;v jl̂g � HðXnÞ
be the iteratively enlarged approximation space. Note that pn 2 V because V is the approximation space before the truncation step.
Let q(t) be the solution of the projected CME
_qðtÞ ¼ PVAqðtÞ for t 2 ½tn; tnþ1	
qðtnÞ ¼ pn

ð23Þ
where
PV : HðXnÞ ! V ; PV w ¼
Xl̂
i¼1

v ji ;w
	 


v ji
denotes the orthogonal projection from HðXnÞ onto V. Then, the local error pn+1 � p(tn+1) is bounded by
kpnþ1 � pðtnþ1Þk1 6
h5

720
ðPVAÞ5pn

��� ���
1
þO h6

� �
þ tolþ

Z tnþ1

tn

kðPV � IÞAqðsÞk1ds: ð24Þ
Proof. The error is split into the three parts
pnþ1 � pðtnþ1Þ
�� ��

1 6 pnþ1 � p̂nþ1

�� ��
1 þ p̂nþ1 � qðtnþ1Þk k1 þ qðtnþ1Þ � pðtnþ1Þk k1: ð25Þ
The error bound kpnþ1 � p̂nþ1k1 6 tol follows directly from the definition of pn+1 in step 6 of the algorithm. The steps 2 and 3
in the algorithm are equivalent to applying the 2-stage Gauss method to the projected CME (23). The local error of the Gauss
method is bounded by
kp̂nþ1 � qðtnþ1Þk 6
h5

720
ðPVAÞ5pn

��� ���
1
þO h6

� �
ð26Þ
which can be shown by standard arguments. In order to derive an error bound for the last term in (25) we use that
d(t) = q(t) � p(t) satisfies the equation
remark that adaptive in this context means the ability to control the global step-size and not a fully adaptive scheme where each degree of freedom is
ted with its own step-size. Although such a local time-stepping method could increase performance, it is dependent on advanced knowledge of the
, and our goal is to construct a method that is free of such assumptions.
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_dðtÞ ¼ AdðtÞ þ ðPV � IÞAqðtÞ:
The variation-of-constants formula yields
dðtÞ ¼ dðtnÞ þ
Z t

tn

exp ðt � sÞAð ÞðPV � IÞAqðsÞds;
where expððt � tnÞAÞ denotes the flow of the CME (22). Since d(tn) = q(tn) � p(tn) = 0 and k expððt � tnÞAÞk1 ¼ 1 for all t P tn, it
follows that
kqðtnþ1Þ � pðtnþ1Þk1 ¼ kdðtnþ1Þk1 6

Z tnþ1

tn

kðPV � IÞAqðsÞk1ds:
Substituting these bounds in (25) proves the assertion. h

In (24) the term h5kðPVAÞ5pnk1=720 arises from the time integration of the projected CME. Evaluating the expression
ðPVAÞ5pn in a straightforward way would imply five evaluations of A, but fortunately, this can easily be avoided: if
pn ¼

Pl̂
i¼1biv ji is the representation of the old approximation, then
ðPVAÞ5pn ¼
Xl̂
i¼1

fiv ji ; ðf1; . . . ; fl̂ÞT ¼ A5ðb1; . . . ;bl̂Þ
T
:

Hence, only the relatively small Galerkin matrix A has to be applied five times, not the full operator A. The integral term in
(24) represents the error caused by the spatial approximation in the sense that it describes how the solution of the projected
CME deviates from the solution of the full CME. Since the function q(t) is not computed in the algorithm, an exact evaluation
of this term is not available, but a first-order approximation is given by
Z tnþ1

tn

kðPV � IÞAqðsÞk1ds � ðtnþ1 � tnÞkðPV � IÞAqðtnÞk1 ¼ hkðPV � IÞApnk1: ð27Þ
With (24) and (27) the condition kp(tn+1) � pn+1k1 � tol leads to the step-size selection
h ¼min
tol

kðPV � IÞApnk1
;Csafe �

720 � tol
kðPVAÞ5pnk1

 !1=5
8<
:

9=
; ð28Þ
with an optional safety factor Csafe 6 1. The main difficulty is that the step-size h has to be chosen before the time step
pn ´ pn+1 is carried out, but the space V is only known after the time step. At time tn only the subspace
W ¼ spanfv j1 ; . . . ;v jgg � V � HðXnÞ
spanned by the basis elements from the representation pn ¼
Pg

i¼1biv ji � pðtnÞ is available. For the estimate (26), this differ-
ence is negligible, because this term estimates the error caused by the time integration. For the estimate of the spatial error,
however, simply replacing V by W is far too pessimistic. An estimate for the term kðI � PV ÞApnk1 can be computed by means
of a prediction of how many new basis elements will be chosen during the time step. Let
Apn ¼
XN

l¼1

hlv l ð29Þ
be the representation of Apn. First, we apply the projection (I � PW) which removes all terms with index l 2 {j1, . . . , jg} from
(29). From the remaining coefficients, we discard the m coefficients with the largest absolute value, because the correspond-
ing basis elements are most likely to be selected during the enlargement of the approximation space. The number m should
depend on how many basis elements are currently used (g) and on the maximal number of basis elements (lmax), i.e.
m = s�(lmax � g) with some safety factor s 2 [0,1]. In our numerical experiments, the value s = 0.5 was used. The larger the
value m, the larger the new step-size h, but this also means that more basis elements will be necessary.

These considerations are summarized in the following algorithm for the step-size selection. This algorithm is started at
the beginning of every time step, i.e. before the algorithm from Section 3.2.

Parameter: error tolerance tol > 0.
Input: index subset {j1, . . . , jg} and coefficients b1, . . . ,bg of the current approximation pn ¼

Pg
i¼1biv ji , Galerkin matrix A

defined by (17).
Output: step-size h for the step tn ´ tn+1 = tn + h.
1. Compute hspace:

(a) Compute Apn and, via a fast wavelet transform, its representation (29).
(b) Set hl = 0 for all l = j1, . . . , jg.
(c) Put m = s�(lmax � g) and set the m largest (in modulus) coefficients to zero. With a fast inverse wavelet transform,

compute 1 ¼
P

lRDhlv l where D is the index set of the discarded terms.
(d) Set hspace = tol/k1k1.
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2. Compute htime:
(a) Compute
ðPWAÞ5pn ¼
Xg

i¼1

fiv ji ; ðf1; . . . ; fgÞT ¼ A5ðb1; . . . ; bgÞ
T
:

(b) Set htime ¼ Csafe � ð 720�tol
kðPWAÞ5pnk1

Þ1=5

3. Choose h = min{hspace, htime}.

Remark. In a previous version of our code, we did not fix the step-size at the beginning of the time step, but instead changed
the step-size during the iterations (steps 2 through 5) based on the new informations gained from the enlargement of the
approximation space. However, this strategy was not successful, because the decision which basis elements are chosen
depends implicitly on the step-size, such that the basis elements which have been selected in previous iterations are no longer
suitable if the step-size has changed.

4. Numerical examples

The following four numerical examples demonstrate the performance of the adaptive wavelet method. The first two
examples confirm that the accuracy of our method indeed agrees with the tolerance selected by the user. The third and
fourth examples showcase the capability of our approach to solve large, non-trivial problems with bimodal solution profiles.

4.1. Merging modes

Let us consider two species S1 and S2 that interact via the following reaction channels
2 Bec
at discr
R1 : S1 ! S2

R2 : S2 ! S1

R3 : S1 ! H

R4 : S2 ! H

a1 ¼ c1x1

a2 ¼ c2x2

a3 ¼ c3x1

a4 ¼ c4x2





m1 ¼ ð�1;1ÞT

m2 ¼ ð1;�1ÞT

m3 ¼ ð�1; 0ÞT

m4 ¼ ð0;�1ÞT
with rate constants c1 = 1.5, c2 = 0.7, c3 = 0.7 and c4 = 0.2. The purpose of this very simple example is to check the behavior of
the error with respect to the tolerance selected by the user. This is made possible because the exact solution of the corre-
sponding CME is known: all reactions are of monomolecular type, and for such systems an explicit formula has been derived
in [22].

For any x 2 N2; N 2 N and any r = (r1,r2) with r1,r2 2 [0,1] and r1 + r2 6 1, the multinomial distribution Mðx;N; rÞ is de-
fined by
Mðx;N; rÞ ¼ N!
r

x1
1

x1 !

r
x2
2

x2 !

ð1�r1�r2ÞN�x1�x2

ðN�x1�x2Þ!
if x1 þ x2 6 N

0 otherwise:

(

M is a two-dimensional extension of the well-known binomial distribution. For the initial distribution we choose
qðxÞ ¼ 0:5 �Mðx;N; rð1ÞÞ þ 0:5 � Mðx;N; rð2ÞÞ ð30Þ
with r(1) = (0.7,0.1)T, r(2) = (0.1,0.7)T, and N = 63. Then, the exact solution of the corresponding CME is
pðt; xÞ ¼ 0:5 � Mðx;N; sð1ÞðtÞÞ þ 0:5 �Mðx;N; sð2ÞðtÞÞ; ð31Þ
with
sðiÞðtÞ ¼ expðtCÞrðiÞ; C ¼
�ðc1 þ c3Þ c2

c1 �ðc2 þ c4Þ

� �

(cf. [22]). Fig. 2 shows that p(t,x) consists of two modes which merge to one single peak as time evolves.2

The adaptive wavelet method was applied to this problem on the time interval [0,1] using db2 wavelets and four different
tolerances. In the left panel of Fig. 3 we plot the error of the adaptive wavelet method in the 1-norm by comparing each of
the approximations with the explicitly derived solution. The plot illustrates that for tolerances up to tol = 10�3 the error
estimator described in (28) works well and the error is almost always below the chosen tolerance. For smaller tolerances,
however, the selection of the step-size is too optimistic, i.e. the steps are not small enough. We remark that this behavior
ause of the discrete nature of the solution of the CME, contour or mesh plots are somewhat misleading, since the probability distribution is only defined
ete points x 2 Nd . Such plots, however, provide a much clearer picture of the solution profile than other visualization methods.
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Fig. 3. Left panel (a): error of the adaptive wavelet approximation of the merging modes problem for tol1 = 10�1 (square), tol2 = 10�2 (circle), tol3 = 10�3

(diamond) and tol4 = 10�4 (cross). The error was computed in the 1-norm by comparing each of the approximations with the exact solution. Left panel (b):
error of the adaptive wavelet approximation for tol = 10�1, 10�2, 10�3 and 10�4 using a safety factor Csafe = 0.7 for htime.
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Fig. 2. Exact solution of the merging modes system at t = 0, t = 0.25, t = 0.5 and t = 0.75 (from left to right).
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appears only for tolerances that are going to be used for small problems. An easy fix is to use a safety factor Csafe in the second
term in (28), and the result is illustrated in the right panel of Fig. 3. It is also important to mention that the 1-norm scales
with the state space, so for bigger problems, a tolerance of 10�1 or 10�2 provides a sufficiently good accuracy. As additional
information, the evolution of the step-size and the number of basis elements used by the runs without the safety factor are
plotted in Fig. 4.
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Fig. 4. Left panel (a): evolution of the step-size h for the merging modes problem without the safety factor, using tol1 = 10�1 (solid), tol2 = 10�2 (dashed),
tol3 = 10�3(dotted) and tol4 = 10�4 (dash-dot). Right panel (b): number of basis elements used in each step to compute the approximation for tol1 = 10�1

(solid), tol2 = 10�2 (dashed), tol3 = 10�3(dotted) and tol4 = 10�4 (dash-dot).
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4.2. Genetic toggle switch

In this example, we investigate a pair of mutually repressing genes, where the two competing species S1 and S2 each
inhibits the transcription of its opponent. The reaction channels are
Fig. 5.
The err
for the
R1 : H! S1

R2 : H! S2

R3 : S1 ! H

R4 : S2 ! H

a1 ¼ c11=ðc12 þ x2
2Þ

a2 ¼ c21=ðc22 þ x2
1Þ

a3 ¼ c3x1

a4 ¼ c4x2





m1 ¼ ð1; 0ÞT

m2 ¼ ð0;1ÞT

m3 ¼ ð�1;0ÞT

m4 ¼ ð0;�1ÞT
with parameters c11 = c21 = 10, c12 = c22 = 30 and c3 = c4 = 0.017. If copies of S2 are present in abundance, then the propensity
function for reaction R1 almost vanishes, which inhibits the transcription of new copies of S1. However, over sufficiently long
time-intervals, stochastic fluctuations can cause an increase in the copy-numbers of S1, meaning that the production of S2

will be inhibited instead, and leading to a switch in the roles of S1 and S2. Consequently, the solution of the CME develops
two peaks that correspond to the two possible scenarios. Reactions R3 and R4 model the decay of the two competing species.

The corresponding CME was solved by the adaptive wavelet method on the time interval [0,500] using db3 wavelets. As
initial distribution a ‘‘discrete Gaussian”,
pð0; xÞ ¼ c � expð�ðx� lÞT Cðx� lÞÞ; for all x 2 Xn;

C ¼
10;000 0

0 10;000

� �

centered at l = (20,18) was chosen; the normalization constant c was determined via the condition

P
x2Xn

pð0; xÞ ¼ 1. In this
example, the truncated state space X32,32 was small enough such that a reference solution could be obtained with the MAT-
LAB routine ode15s. Three different runs of the adaptive wavelet method using the same parameters but different tolerances
were performed. In the left panel of Fig. 5 the error of the adaptive wavelet approximation for each of the three tolerances is
shown. The error was computed in the 1-norm by comparing each of the approximations with a reference solution obtained
using the routine ode15s. The plot reveals that the error usually lies below the chosen tolerance and thus the method almost
always provides an approximation of the exact solution at the desired accuracy. In the right panel, the time evolution of the
step-size h corresponding to the different tolerances is shown. As expected, the adaptive method selects larger time steps for
low tolerances, while higher tolerances imply the use of smaller step-sizes. Moreover, small time steps are only required in
the stiff transient phase at the beginning of the time interval, which shows that our adaptive step-size control is clearly more
efficient than time integration with a fixed step-size.

4.3. Extended toggle switch

As a third more challenging example, we consider another genetic toggle switch, which consists of two mutually repress-
ing gene products, S1 and S2, that express two proteins, denoted by S3 and S4 respectively. The interactions between these
four species (d = 4) are modelled by the following reaction system:
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Left panel (a): error of the adaptive wavelet approximation of the toggle switch for tol1 = 0.1 (square), tol2 = 0.01 (diamond) and tol3 = 0.001 (circle).
or was computed in the 1-norm by comparing each of the approximations with the reference solution. Right panel (b): evolution of the step-size h
toggle switch solved by the adaptive wavelet method with tol1 = 0.1 (square), tol2 = 0.01 (diamond) and tol3 = 0.001 (circle).
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R1 : H! S1

R2 : H! S2

R3 : S1 ! H

R4 : S2 ! H

R5 : S1 ! S1 þ S3

R6 : S2 ! S2 þ S4

R7 : S3 ! H

R8 : S4 ! H

a1 ¼ c11=ðc12 þ x2
2Þ

a2 ¼ c21=ðc22 þ x2
1Þ

a3 ¼ c3x1

a4 ¼ c4x2

a5 ¼ c5x1

a6 ¼ c6x2

a7 ¼ c7x3

a8 ¼ c8x4





m1 ¼ ð1;0; 0;0ÞT

m2 ¼ ð0;1; 0;0ÞT

m3 ¼ ð�1;0; 0;0ÞT

m4 ¼ ð0;�1; 0;0ÞT

m5 ¼ ð0;0;1;0ÞT

m6 ¼ ð0;0;0;1ÞT

m7 ¼ ð0;0;�1;0ÞT

m8 ¼ ð0;0;0;�1ÞT
In addition to reactions R1 through R4 which have been discussed in the previous subsection, four more reactions have been
added to the model. R7 and R8 model the decay of the respective species, while the expression of proteins is described by
reactions R5 and R6. The parameters for the reaction channels are
c11 ¼ c21 ¼ 10; c12 ¼ c22 ¼ 30; c3 ¼ c4 ¼ 0:017; c5 ¼ c6 ¼ c7 ¼ c8 ¼ 0:01;
with the initial distribution being a ‘‘discrete Gaussian” with a small variance, centered at l = (20,18,22,5), which closely
resembles a delta peak located at l. The number of degrees of freedom in this example is 220, the state space being
32 � 32 � 32 � 32 (d = 4). The corresponding CME was solved by the adaptive wavelet method on the time interval
[0,500], with the method being configured to use tol = 0.5 in the 1-norm. This value seems to be unreasonably large, but
since the 1-norm scales with the size of the state space, this choice will in fact provide a very good accuracy. An equally dis-
tributed error � with k�k1 = 0.5 would, for example, correspond to a maximal error of k�k1 = 0.5/220 � 4.77 � 10�7.

The method was configured to keep a minimum of 5000 of the largest coefficients at the end of each time step, while the
total number of elements that could be used within the algorithm was not allowed to exceed 6000. Hence, the solution was
approximated using only 0.47% of the total number of 1,048,576 degrees of freedom. New basis elements were proposed in
batches of 250 elements each and the db3 wavelet basis was again chosen to approximate the solution.

The time evolution of the CME solution is shown in Fig. 8. As the full distribution is a four-dimensional object, we only
plot the most relevant 2D marginal distributions at different times. The first two columns depict mesh and contour plots of
the marginal distribution of the gene products S1 � S2 at different times, while in the third column, a contour plot for the
marginal distribution of the proteins S3 � S4 is shown. Pronounced bi-modality is evident at t = 500 in both marginal
distributions.

The change in step-size h for the integrator is plotted in panel (a) of Fig. 6, and the 1-norm of the residual is shown in
panel (b). The stiffness of the problem is clearly visible in Fig. 8, and the evolution of the time step conforms to the expec-
tation that small step-sizes are selected in the initial phase, while larger ones are possible as the distribution approaches the
steady state.

We remark that by eliminating from the model the reactions involving the proteins S3 and S4, i.e. R5 through R8, we obtain
the simplified 2D toggle switch presented in Section 4.2. The solution of this smaller problem agrees with the marginal dis-
tribution in the S1 � S2 plane of the 4D model, and as such can be used as a sort of reference solution, because the truncated
state space X32,32 of the simplified problem is small enough such that it is possible to compute a reference solution with the
MATLAB routine ode15s. In Fig. 7, we use this property to illustrate the need for higher-order wavelet basis when the number
of degrees of freedom is large. Firstly, the Haar basis is used to compute an approximation using the adaptive wavelet meth-
od for the 4D toggle switch. The marginal distribution in the S1 � S2 plane is shown at time t = 500 in the leftmost panel. The
middle panel displays the results obtained using the same parameters for the solver, but this time employing the db3 wave-
let basis. The ‘‘reference” solution computed using MATLAB’s ode15s on the simplified 2D problem is shown in the right
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. Right panel (c): number of basis elements used in each step to compute the approximation.
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panel. It is immediately clear that for problems of a certain size, the Haar wavelet basis used in [20] is no longer adequate as
the number of basis elements needed would simply be too high. This factor would then drive the computational cost above
reasonable levels. In contrast, the possibility to use the entire Daubechies wavelet family (which includes Haar) increases the
flexibility of the adaptive wavelet method allowing the efficient numerical treatment of a variety of problems.

4.4. Infectious diseases

The SEIR is an epidemic model used to describe the spread of communicable diseases within a population (see [19] for
details). The population is split into four classes (d = 4), namely individuals susceptible to become infected with the disease
(S), exposed individuals (E) that are infected but not yet contagious, infectious individuals (I) and individuals that have recov-
ered (R), and in the process acquired immunity to the disease. The sub-populations of the model interact via the following
reaction channels:
R1 : Sþ I! Eþ I

R2 : E! S

R3 : I! S

R4 : S! H

R5 : E! H

R6 : I! R

R7 : H! S

a1 ¼ c1x1x3

a2 ¼ c2x2

a3 ¼ c3x3

a4 ¼ c4x1

a5 ¼ c5x2

a6 ¼ c6x3

a7 ¼ c7





m1 ¼ ð�1;1;0; 0ÞT

m2 ¼ ð0;�1;1; 0ÞT

m3 ¼ ð1; 0;�1; 0ÞT

m4 ¼ ð�1;0; 0;0ÞT

m5 ¼ ð0;�1; 0;0ÞT

m6 ¼ ð0;0;�1;1ÞT

m7 ¼ ð1; 0;0; 0ÞT
Reaction R1 models the process through which susceptible individuals become infected by having contact with infectious
ones. The infected individuals first enter the latent phase of the disease becoming members of the E class, and can become
infectious themselves after the incubation period via reaction R2. The temporary recovery of infected individuals can occur
via reaction R3. Reactions R4 and R5 describe the death of susceptible and exposed individuals, whereas reaction R7 represents
new arrivals that are prone to becoming infected. Reaction R6 describes the recovering process of infectious individuals, that
also acquire immunity to the disease. We assume that the inflow of susceptible individuals via reaction R7 is constant and is
independent of the current size of the population. We are interested in the scenario where the disease starts with only a few
infected individuals. This variant of the model is stochastic as the question whether the disease quickly spreads to a large
section of the population or disappears at some early stage is dependent on the fate of the these first infectious individuals.
In our example the parameters for the reaction channels are
c1 ¼ 0:1; c2 ¼ 0:5; c3 ¼ 1; c4 ¼ c5 ¼ c6 ¼ 0:01; c7 ¼ 0:4;
and as initial distribution, a ”discrete Gaussian‘‘ centered at l = (50,4,0,0) was considered.
Fig. 9 shows the time evolution of the probability distribution for our SEIR model. For the marginal distribution in the S–E

plane both contour and mesh plots are shown (left and middle column, from top to bottom). The rightmost column shows a
contour plot for the marginal distribution in the S–I plane. During the course of the simulation, the marginal distribution in
the S–E plane splits up into two distinct peaks. The peak located at (50,0) depicts the scenario in which the first few infec-
tious individuals have either died or recovered before their number reached a critical mass and therefore the disease extin-
guished itself after some time. If the opposite happens, and the infection spreads fast enough during the initial phase, then
the system will eventually reach a state where most of the population is infected, as indicated by the second peak located at
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(11,27). Similar bimodalities appear in the marginal distributions of the S–I plane (left column) and E–I plane (data not
shown).

The fact that the solution is multi-modal and the peaks are located far apart poses no significant challenges to the adap-
tive wavelet method. In the last row of panels from Fig. 9, the non-smooth character of the solution can be clearly observed.
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Fig. 8. Marginal distribution of the 4D toggle switch model at different times. Surf plot (first column) and contour plots (second and third columns) of the
approximation obtained with the adaptive wavelet method.
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At time t = 7 the solution vanishes close to the S-axis but does not vanish on the axis itself. This local non-smoothness will
pose problems to methods which assume a certain regularity of the solution. Although wavelets are best suited for the
approximation of sufficiently smooth signals, the method is also able to handle such difficult scenarios.

Between t = 3 and t = 5 the solution profile for SEIR conforms to a rather thin line that is not parallel to any of the axes.
Methods which represent the solution in terms of global tensor products (e.g., the method from [23]) would need too many
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approximation obtained with the adaptive wavelet method.
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degrees of freedom to achieve an usable accuracy. The adaptive wavelet method suffers from no such drawbacks, because the
elements of the wavelet basis used are local tensor products with small support.

As before, the adaptive wavelet method was used with the db3 wavelet basis to approximate the solution of the corre-
sponding CME. The choice of wavelet basis was motivated by the desire to have good compression properties while keeping
the support reasonably small. In order to cover the time interval [0,7], 122 steps of the algorithm were required. The method
was configured to use tol = 0.61 in the 1-norm, and the iteration for solving the linear system was stopped if this tolerance
was met or if the total number of basis elements exceeded 6500. At the end of each step, only the largest 6000 coefficients
were kept which corresponds to 0.57% out of the total number of 220 degrees of freedom. New basis elements were added in
batches of 250 elements each and solving the linear system (19) was accomplished via GMRES with restarts and a tolerance
of 5�1e�4.

From a numerical point of view, the biggest limiting factor in computing the solution of the CME for this and the previous
problem is the huge state space with more than 1,000,000 states. As can be clearly seen in the panels of Figs. 8 and 9, most of
these states are never populated throughout the time evolution, which means that the subset of essential states is actually
smaller. However, this information is of little practical use, because we only know which states can be ignored a posteriori. As
the adaptive wavelet method is specifically designed to find the essential degrees of freedom, it is particularly suited to deal
with these type of problems.
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